個人資料
李家岩
博士 美國德州農工大學 工業與系統工程 博士
碩士 國立清華大學 工業工程與工程管理 碩士
學士 國立政治大學 應用數學暨資訊管理 雙學士
研究室 : 二館 711
電話 : +886-2-33661206
傳真 :
諮詢時段 :
相關連結 :
主要研究領域
• 作業研究
• 製造數據科學
• 生產力與效率分析
• 隨機最佳化
• 多目標決策分析
研究領域摘要
學歷
• 美國德州農工大學 工業與系統工程 博士
• 國立清華大學 工業工程與工程管理 碩士
• 國立政治大學 應用數學暨資訊管理 雙學士
課程
• 管理數學
• 製造數據科學
• 作業研究應用與實作
• 生產力與效率分析
獲獎
2019/12 呂鳳章先生紀念獎章, 社團法人中華民國管理科學學會
2019/11 台達講座獎勵, 財團法人成電文教基金會
2018/10 美光教師獎, 美光科技公司/美光基金會
2018/9 國立成功大學106學年度教學優良教師
2018/7 李國鼎研究獎, 李國鼎科技與人文講座, 成功大學-台達電子工業股份有限公司
2017/12 科技部106年吳大猷先生紀念獎
2017/12 臺灣綜合大學系統「年輕學者創新研發成果」佳作
2017/8, 2014/8 科技部優秀年輕學者研究計畫
2016/12 Best Practice Paper Award (First Prize), The 17th Asia Pacific Industrial Engineering and Management Systems Conference (APIEMS
2016/12 優秀青年工業工程師獎, Chinese Institute of Industrial Engineers (CIIE)
2016/11 科技部工程司產學成果簡報優良獎
2014/12 Best Paper Award of Optimization Modelling, 2014 Chinese Institute of Industrial Engineers (CIIE) Conference
2013/12 Best Paper Award of Low-Carbon Economy, 2013 Chinese Institute of Industrial Engineers (CIIE) Conference
2012/4 Who's Who Among Students in American Universities and Colleges for 2011-2012 recognized by Texas A&M
經歷
2020/8 - Present 教授,國立台灣大學資訊管理學系
2020 - 2022 子學門召集人,工業工程與管理學門-大數據分析與資訊系統子學門,科技部
2020 - 2022 副編輯,IEEE自動化科學與工程期刊
2018 - Present 講師,台灣人工智慧學校經理人班, (台北、新竹、台中、南部)
2018 - 2020/7 所長,國立成功大學製造資訊與系統研究所
2019/8 - 2020/7 教授,國立成功大學資訊工程學系暨製造資訊與系統研究所
2018 - 2019 副秘書長,台灣作業研究學會
2016/8 - 2019/7 副教授,國立成功大學資訊工程學系暨製造資訊與系統研究所
2016 - 2019 副編輯,彈性服務與製造期刊
2012/8 - 2016/7 助理教授,國立成功大學資訊工程學系暨製造資訊與系統研究所
2012 - 2020 國立成功大學工學院工程管理碩士在職專班
研討會論文
  1. Hong, Tzu-Yen, Lu, Kuan-Chun (盧冠均), Chu, Chia-Fan (禇家帆), and Lee, Chia-Yen, November 2024, Reinforcement Learning and Robust Optimization for T/C Balance of TFT-LCD Cell Process Scheduling in TFT-LCD Manufacturer (強化學習與穩健最佳化建構T/C 平衡生產排程於面板組立製程), Chinese Institute of Industrial Engineers Annual Conference (CIIE2024), (National Taipei University of Technology, Taipei, Taiwan), Nov. 2024 (Best Paper Award).
  2. Hung, Yu-Hsin, and Lee, Chia-Yen, 2024, KDLIME: KNN-Kernel Density-Based Perturbation for Local Interpretability, ECML PKDD International Workshop on eXplainable Knowledge Discovery in Data Mining, (Vilnius), September 9-13, 2024.
  3. Kang, Wei, and Lee, Chia-Yen, 2024, Stochastic Capacity Planning with Most Productive Scale Size and Eco-Efficiency, 2024 IEEE 20th International Conference on Automation Science and Engineering (IEEE CASE 2024), (Bari, Italy), August 28 – September 1, 2024.
  4. Hsu, Yun-Chia, and Lee, Chia-Yen, 2024, Robust Ensemble Forecasting and Deep Reinforcement Learning for Energy Management of Islanded Microgrids, 2024 IEEE 20th International Conference on Automation Science and Engineering (IEEE CASE 2024), (Bari, Italy), August 28 – September 1, 2024.
  5. Chen, Yenwen, Chu, Pin-Chi, and Lee, Chia-Yen, 2024, Real Options for Maintenance Scheduling with Bearing Degradation in Panel Manufacturer, 2024 IEEE 20th International Conference on Automation Science and Engineering (IEEE CASE 2024), (Bari, Italy), August 28 – September 1, 2024.
  6. Hsieh, Tsung-Ta (謝宗達), Hsiao, Jui Hsin (蕭瑞昕), Lee, Chia-Yen, 2024, Unsupervised Image Demoireing and Self-Consistent GAN for TFT-LCD Defect Detection (自洽式生成對抗網路於無監督圖像去噪以檢測面板缺陷), The 26th Decision Analysis Symposium (DAS 2024), (National Taiwan University of Science and Technology, Taipei, Taiwan), Jan. 6, 2024. (Best Paper Award).
  7. Chen, Bo-Ru (陳柏儒), Li, Zong-Yang (李宗陽), Lee, Chia-Yen, 2023, Causal Inference and Policy Learning for Manufacturing Process Diagnosis (因果推論與政策學習於製程參數診斷), Chinese Institute of Industrial Engineers Annual Conference (CIIE2023), (Feng Chia University, Taichung, Taiwan), Dec. 9, 2023. (Best Paper Award).
期刊論文
  1. Lee, Chia-Yen*, Li, Yao-Wen, and Chang, Chih-Chun, 2024, Multi-agent reinforcement learning for chiller system prediction and energy-saving optimization in semiconductor manufacturing, International Journal of Production Economics, 280, 109488, MOST111-2628-E-002-019-MY3.
  2. Lee, Chia-Yen, Lin, Yung-Lun, Lin, Shu-Hung, and Yang, T., 2024, Virtual material quality investigation system, IEEE Transactions on Engineering Management, 71, 2649 - 2659, MOST110-2221-E-002-163.
  3. Lee, Chia-Yen, and Chen, Yen-Wen, 2024, Reinforcement learning with data envelopment analysis and conditional value-at-risk for the capacity expansion problem, IEEE Transactions on Engineering Management, 71, 6469-6480, MOST111-2628-E-002-019-MY3.
  4. Wu, Yen-Tung, and Lee, Chia-Yen*, 2024, Marginal productivity of product mix matters? data envelopment analysis for marginal profit consistency in Taiwan’s life insurance industry, Operations Research Forum, 5, 7, MOST111-2628-E-002-019-MY3.
  5. Huang, Y.-Y.*, Menozzi, M., and Lee, Chia-Yen, 2024, Vergence-Accommodation Conflict: Increased Presbyopia in Virtual Reality, Klinische Monatsblätter für Augenheilkunde, 241(04), 540-544, MOST111-2221-E-002-197.
  6. Lee, Chia-Yen*, Chang, Kai, and Ho, Chien, 2024, Autoencoder-based detector for distinguishing process anomaly and sensor failure, International Journal of Production Research, 62(19), 7130-7145, MOST111-2221-E-002-197.
  7. Hung, Yu-Hsin, and Lee, Chia-Yen*, 2024, BMB-LIME: LIME with modeling local nonlinearity and uncertainty in explainability, Knowledge-Based Systems, 294, 111732, NSTC112-2221-E-002-003.
  8. Lee, Chia-Yen*, Ho, Chieh-Ying, Hung, Yu-Hsin, and Deng, Yu-Wen, 2024, Multi-objective genetic algorithm embedded with reinforcement learning for petrochemical melt-flow-index production scheduling, Applied Soft Computing, 159, 111630, NSTC112-2221-E-002-003.
  9. Dai, S., Fang, Yu-Hsueh, Lee, Chia-Yen, Kuosmanen, T.*, 2024, pyStoNED: a python package for convex regression and frontier estimation, Journal of Statistical Software, 111 (6), 1-43.
  10. Lu, Hsuan-Wen, and Lee, Chia-Yen*, 2024, Feature-enhanced multisource subdomain adaptation on robust remaining useful life prediction, IEEE Robotics and Automation Letters, 9(7), 6130 - 6137, MOST111-2221-E-002-197.
  11. Cheng, Yu-Hsiang, Lee, Chia-Yen*, Tsai, C.-H., and Wu, J.-M., 2024, Two-phase data science framework for compensation of the friction force in CNC machines, International Journal of Computer Integrated Manufacturing, MOST110-2221-E-002-163.
  12. Lee, Chia-Yen*, Huang, Yi-Tao, and Chen, P.-J., 2024, Robust-optimization-guiding deep reinforcement learning for chemical material production scheduling, Computers and Chemical Engineering, 187, 108745, MOST111-2221-E-002-197.
  13. Hung, Yu-Hsin, Shen, Hong-Ying, and Lee, Chia-Yen*, 2024, Deep reinforcement learning-based preventive maintenance for repairable machines with deterioration in a flow line system, Annals of Operations Research, MOST111-2628-E-002-019-MY3; MOST 111-2221-E-002-197.
  14. Hung, Chi-Yu, Lee, Chia-Yen*, Tsai, C.-H., and Wu, J.-M., 2024, ORgram: semi-supervised learning framework for inline bearing diagnosis in varying speed, The International Journal of Advanced Manufacturing Technology, 134, 2387–2401, MOST111-2221-E-002-197.
  15. Lee, Chia-Yen*, Wu, Cheng-Man, Hsu, C.-Y., Xie, H.-H., and Fang, Yu-Hsueh, 2023, Lithography reticle scheduling in semiconductor manufacturing, Engineering Optimization, MOST111-2221-E-002-197.
  16. Lee, Chia-Yen, and Yang, Shu-Huei, 2023, Graph spatio-temporal networks for manufacturing sales forecast and prevention policies in pandemic era, Computers & Industrial Engineering, 182, 109413, MOST111-2628-E-002-019-MY3.
  17. Lee, Chia-Yen, and Tseng, Chin-Yi, 2023, Market power and efficiency analysis in bi-level energy transmission market, Journal of Optimization Theory and Applications, 196, 544–569, MOST108-2221-E-006-223-MY3.
  18. Lee, Chia-Yen, and Chien, C.-F., 2022, Pitfalls and protocols of data science in manufacturing practice, Journal of Intelligent Manufacturing, 33, 1189–1207, MOST106-2218-E-031-001.
  19. Lee, Chia-Yen, and Charles, V., 2022, A robust capacity expansion integrating the perspectives of marginal productivity and capacity regret, European Journal of Operational Research, 296 (2), 557-569, MOST103-2221-E-006-122-MY3; MOST108-2221-E-006-223-MY3.
  20. Chiang, Tsai-Pin, and Lee, Chia-Yen*, 2022, Solid waste management for the eco-efficiency assessment of energy recovery from waste in incinerators, Resources, Conservation & Recycling, 186, 106589, MOST108-2221-E-006-223-MY3; MOST111-2628-E-002-019-MY3.
  21. Lee, Chia-Yen, Sun, Wei-Chun, and Li, Y.-H., 2022, Biodiesel economic evaluation and biomass planting allocation optimization in global supply chain, IEEE Transactions on Engineering Management, 69 (3), 602-615, MOST106-2628-E-006-009-MY3.
  22. Hung, Yu-Hsin, Lee, Chia-Yen, Tsai, Ching-Hsiung, and Lu, Yen-Ming, 2022, Constrained particle swarm optimization for health maintenance in three-mass resonant servo control system with LuGre friction model, Annals of Operations Research, 311, 131–150, MOST110-2221-E-002-163.
  23. Lee, Chia-Yen, Chou, Bai-Jian, and Huang, C.-F, 2022, Data science and reinforcement learning for price forecasting and raw material procurement in petrochemical industry, Advanced Engineering Informatics, 51, 101443, MOST106-2218-E-031-001.
  24. Lu, Hsuan-Wen, and Lee, Chia-Yen, 2022, Kernel-based dynamic ensemble technique for remaining useful life prediction, IEEE Robotics and Automation Letters, 7 (2), 1142-1149, MOST110-2221-E-002-163.
  25. Shen, Po-Cheng, and Lee, Chia-Yen, 2022, Wafer bin map recognition with autoencoder-based data augmentation in semiconductor assembly process, IEEE Transactions on Semiconductor Manufacturing, 35(2), 198 - 209, MOST110-2221-E-002-163.
  26. Tseng, Chin-Yi, Lee, Chia-Yen*, Wang, Qunwei, Wu, Changsong, 2022, Data envelopment analysis and stochastic equilibrium analysis for market power investigation in a bi-level Market, Transportation Research Part E: Logistics and Transportation Review, 161, 102705, MOST108-2221-E-006-223-MY3.
  27. Shen, Po-Cheng, Lu, Meng-Xiu, and Lee, Chia-Yen*, 2022, Spatio-temporal anomaly detection for substrate strip bin map in semiconductor assembly process, IEEE Robotics and Automation Letters, 7(4), 9493-9500, MOST110-2221-E-002-163.
  28. Lee, Chia-Yen, Wang, K., and Sun, W., 2021, Allocation of emissions permit for China’s iron and steel industry in an imperfectly competitive market: a Nash equilibrium DEA method, IEEE Transactions on Engineering Management, 68 (2), 548-561, MOST106-2628-E-006-009-MY3.
  29. Lee, Chia-Yen, Wu, Chao-Shian, and Hung, Yu-Hsin, 2021, In-line predictive monitoring framework, IEEE Transactions on Automation Science and Engineering, 18 (4), 1668-1678, MOST106-2218-E-031-001.
  30. Chen, H.-K., Lin, Y.-H., and Lee, Chia-Yen, 2021, Convex nonparametric least squares and stochastic semi-nonparametric frontier to estimate the shadow prices of PM2.5 and NOx for Taiwan’s transportation modes, International Journal of Sustainable Transportation, 15 (9), 659-577.
  31. Lee, Chia-Yen, Chang, Ho-Chien, and Wang, K.-W., 2021, Business ecosystem and technology roadmap for Taiwan’s TFT-LCD industry, Technology Analysis & Strategic Management, 33 (1), 1-17.
  32. Lee, Chia-Yen, Zeng, Jun-Hua, Lee, S.-Y., Lu, R.-B., and Kuo, P.-H., 2021, SNP data science for classification of bipolar disorder I and bipolar disorder II, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 18 (6), 2862-2869.
  33. Lee, Chia-Yen, and Cai, Jia-Ying, 2020, LASSO variable selection in data envelopment analysis with small datasets, Omega: The International Journal of Management Science, 91, 102019, MOST106-2628-E-006-009-MY3.
  34. Hung, Shao-Yen, Lee, Chia-Yen, and Lin, Yung-Lun, 2020, Data science for delamination prognosis and online batch learning in semiconductor assembly process, IEEE Transactions on Components, Packaging and Manufacturing Technology, 10 (2), 314-324, MOST106-2218-E-031-001.
  35. Lee, Chia-Yen, and Dong, Zhao-Hong, 2019, Hierarchical equipment health index framework, IEEE Transactions on Semiconductor Manufacturing, 32 (3), 267-276, MOST106-2218-E-031-001.
  36. Tsai, Tsung-Lun, Huang, M.-H., Lee, Chia-Yen, and Lai, W.-W., 2019, Data science for extubation prediction and value of information in surgical intensive care unit, Journal of Clinical Medicine, 8 (10), 1709.
  37. Lee, Chia-Yen, 2019, Decentralized allocation of emission permits by Nash data envelopment analysis in the coal-fired power market, Journal of Environmental Management, 241, 353-362, MOST106-2628-E-006-009-MY3.
  38. Lee, Chia-Yen, Huang, Ting-Syun, Liu, M.-K., and Lan, C.-Y., 2019, Data science for vibration heteroscedasticity and predictive maintenance of rotary bearings, Energies, 12 (5), 801, MOST106-2628-E-006-009-MY3; MOST105-2218-E-007-027.
  39. Lee, Chia-Yen, and Wang, Ke, 2019, Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier, European Journal of Operational Research, 273 (1), 390-400, MOST106-2628-E-006-009-MY3.
  40. Lee, Chia-Yen, and Tsai, Tsung-Lun, 2019, Data science framework for variable selection, metrology prediction, and process control in TFT-LCD manufacturing, Robotics and Computer-Integrated Manufacturing, 55, 76-87, MOST 105-2218-E-007-027.
  41. Lee, Chia-Yen, 2019, Proactive marginal productivity analysis for business shutdown decision by DEA, Journal of the Operational Research Society, 70(7), 1065-1078, NSC102-2410-H-006-055, MOST103-2221-E-006-122-MY3.
  42. Wang, K., Xian, Y., Lee, Chia-Yen, Wei, Y.-M., and Huang, Z., 2019, On selecting directions for directional distance functions in a non-parametric framework: A review, Annals of Operations Research, 278 (1-2), 43–76, MOST103-2221-E-006-122-MY.
  43. Lee, Chia-Yen, and Liang, Chia-Lung, 2018, Manufacturer's printing forecast, reprinting decision, and contract design in the educational publishing industry, Computers & Industrial Engineering, 125, 678-687, MOST104-2622-E-006-026-CC3.
  44. Wang, Ke, Lee, Chia-Yen, Zhang, J., and Wei, Y.-M., 2018, Operational performance management of the power industry: A distinguishing analysis between effectiveness and efficiency, Annals of Operations Research, 268 (1-2), 513-537, MOST103-2221-E-006-122-MY3.
  45. Lee, Chia-Yen, 2018, Mixed-strategy Nash equilibrium in data envelopment analysis, European Journal of Operational Research, 266 (3), 1013-1024, MOST106-2628-E-006-009-MY3.
  46. Lee, Chia-Yen, and Chen, Bo-Syun, 2018, Mutually-exclusive-and-collectively-exhaustive feature selection scheme, Applied Soft Computing, 68, 961-971, MOST104-2622-E-006-026-CC3, MOST103-2218-E-007-023.
  47. Lee, Chia-Yen, 2017, Directional marginal productivity: A foundation of meta-data envelopment analysis, Journal of the Operational Research Society, 68 (5), 544-555, MOST103-2221-E-006-122-MY3.
  48. Chou, H.-W., Lee, Chia-Yen, Chen, Huey-Kuo, and Tsai, Mon-You, 2016, Evaluating airlines with slack-based measures and meta-frontiers, Journal of Advanced Transportation, 50 (6), 1061–1089.
  49. Lee, Chia-Yen, 2016, Most productive scale size versus demand fulfillment: A solution to the capacity dilemma, European Journal of Operational Research, 248 (3), 954–962, MOST103-2221-E-006-122-MY3.
  50. Lee, Chia-Yen, and Chiang, Ming-Chien, 2016, Aggregate demand forecast with small data and robust capacity decision in TFT-LCD manufacturing, Computers & Industrial Engineering, 99, 415-422, MOST103-2221-E-006-122-MY3 and MOST103-2218-E-007-023.
  51. Lee, Chia-Yen, 2016, Nash-profit efficiency: A measure of changes in market structures, European Journal of Operational Research, 255 (2), 659-663, MOST103-2221-E-006-122-MY3.
  52. Lee, Chia-Yen, and Zhou, Peng, 2015, Directional shadow price estimation of CO2, SO2 and NOx in the United States coal power industry 1990-2010, Energy Economics, 51, 493–502, MOST103-2221-E-006-122-MY3.
  53. Lee, Chia-Yen, and Johnson, A. L., 2015, Effective production: Measuring of the sales effect using data envelopment analysis, Annals of Operations Research, 235 (1), 453–486, NSC101-2218-E-006-023.
  54. Lee, Chia-Yen, 2015, Distinguishing operational performance in power production: A new measure of effectiveness by DEA, IEEE Transactions on Power Systems, 30 (6), 3160–3167, NSC102-2410-H-006-055, NCKU RCETS.
  55. Lee, Chia-Yen, and Johnson, A. L., 2015, Measuring efficiency in imperfectly competitive markets: An example of rational inefficiency, Journal of Optimization Theory and Applications, 164 (2), 702–722., NSC101-2218-E-006-023, NCKU RCETS.
  56. Lee, Chia-Yen, 2014, Meta-data envelopment analysis: Finding a direction towards marginal profit maximization, European Journal of Operational Research, 237 (1), 207–216, NSC102-2410-H-006-055.
  57. Lee, Chia-Yen, Chen, C.-H., and Chien, C.-F., 2014, A simulation analysis for evaluating TFT-LCD fab capacity expansion with a distant transportation problem, International Journal of Production Research, 52 (6), 1868–1885, NSC100-2628-E-007-017-MY3.
  58. Lee, Chia-Yen, and Chien, C.-F, 2014, Stochastic programming for vendor portfolio selection and order allocation under delivery uncertainty, OR Spectrum, 36 (3), 761–797, NSC102-2622-E-007-013.
  59. Lee, Chia-Yen, and Johnson, A. L., 2014, 2014, Proactive data envelopment analysis: Effective production and capacity expansion in stochastic environments, European Journal of Operational Research, 232 (3), 537–548, NSC101-2218-E-006-023.
  60. Lee, Chia-Yen, Johnson, A. L., Moreno-Centeno, E., and Kuosmanen, T., 2013, A more efficient algorithm for convex nonparametric least squares, European Journal of Operational Research, 227 (2), 391–400.
  61. Lee, Chia-Yen and Johnson, A. L., 2012, Two-dimensional efficiency decomposition to measure the demand effect in productivity analysis, European Journal of Operational Research, 216 (3), 584–593.
  62. Lee, Chia-Yen and Johnson, A. L., 2011, A decomposition of productivity change in the semiconductor manufacturing industry, International Journal of Production Research, 49 (16), 4761–4785.
  63. Chien, C.-F., Lee, Chia-Yen, Huang, Y., and Wu, W., 2009, An efficient computational procedure for determining the container loading pattern, Computers & Industrial Engineering, 56 (3), 965–978, NSC95-2221-E-007-126.
專書
  1. Lee, Chia-Yen, and Hung, Yu-Hsin, 2022, Manufacturing Data Science: Toward Intelligent Manufacturing and Digital Decision (製造數據科學:邁向智慧製造與數位決策) 前程文化
專書論文
暫無資料
技術報告
暫無資料
其他
暫無資料